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In recent years, zinc-containing metalloenzymes have received 
special attention because of the roles that they play in the etiology 
of many serious diseases;1 thus they serve as target enzymes in 
the design of therapeutically useful inhibitors of enzymes.2 In 
this respect, carboxypeptidase A (CPA), a well-studied Zn2+-
containing metalloexopeptidase,4 bears an unusual importance 
because it serves as a model for many metalloenzymes.13'5 

Recently, we reported that 2-benzyl-3,4-epoxybutanoic acid 
(BEBA) is a novel type of CPA inhibitor which inactivates CPA 
irreversibly in high efficiency.6 This inactivator was shown to 
be a pseudomechanism-based inactivator as designed on the basis 
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of a proposed enzymic mechanism of CPA.6 At the time, however, 
its nature as an inactivator and the proposed mode of inhibition 
were solely based on the kinetic studies and the chemical rationale 
used for the design. Now this communication reports the sin­
gle-crystal X-ray characterization of the inactivated CPA by 
BEBA at 2-A resolution,7 showing clearly that the carboxylate 
of Glu-270 is indeed covalently modified by the inactivator.6 

Furthermore, the stereochemistry of the effective BEBA is es­
tablished as the 25,3/? configuration on the basis of the electron 
density in 2F0 - Fc maps. 

The electron density map (Figure 1) obtained from a single 
crystal7 of inactivated CPA shows the presence of a continuous 
electron density between Glu-270 and the ring-cleaved BEBA to 
indicate clearly the formation of a covalent bond between the 
carboxylate of Glu-270 and BEBA at the 4-position with a con­
comitant ring opening. The length of the newly formed C-O bond 
was modeled to be 1.4 A, a typical value for an ester linkage.10 

The hydroxyl at the C3 of the chemically transformed inhibitor 
is coordinated to Zn2+ with the bond length 2.1 A and the C-
0-Zn2+ angle 103°, replacing the water molecule that is coor­
dinated to the Zn2+ in the native CPA. The position of the 
carboxylate has changed little upon this covalent bond formation. 
As expected, the aromatic ring of Tyr-248 moved to the "down" 
position as seen in structures of CPA-ligand complexes.11 The 
phenyl ring of the inactivator is seated in the S1' subsite, having 
close contacts with Leu-203 and Ile-243 in a perpendicular fashion 
on each side of the ring with distances of 3.9 and 3.5 A, re­
spectively. This may be the result of CH/ir interactions. The 
existence and importance of such interactions have recently been 
pointed out by Nishio and Hirata.12 

The stereochemistry7 of the inactivator deserves a special 
mention. We were surprised to learn that the stereochemistry 
of the C2 stereogenic center is the 5 configuration because it 
corresponds to the D series, which is opposite to the known 
stereochemistry of CPA substrates.13 CPA is shown to have L 
stereospecificity.1-4 This reversal of stereochemistry became, 
however, apparent when molecular models of four possible ste­
reoisomers of BEBA were examined in comparison with those of 
substrates. Thus, when the benzyl and the carboxylate moieties 
of each BEBA stereoisomer were superimposed onto the corre­
sponding moieties of iV-acetyl-L-phenylalanine, only the epoxy 
oxygen of the 25,3R isomer, which is presumed to ligate to the 
Zn2+ at the active site, was positioned in close proximity to the 
amide oxygen of the substrate. 

To our best knowledge, the present communication describes 
the first single-crystal X-ray structure of CPA covalently modified 
at the carboxylate of Glu-270, which has been implicated as the 
catalytic reaction site of CPA. Furthermore, it confirms the kinetic 
results reported in the previous communication6 and strongly 
supports the letigimacy of the rationale used in the design of BEBA 
as a CPA inactivator.6 Lastly, the present study bears a con-
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Figure 1. Stereoview of the electron density map and the final atomic model in the active site. The newly formed C-O bond between BEBA and Glu-270 
of CPA is shown in red. The following residues are labeled: Arg-127, Arg-145, Leu-203. lle-243, Glu-270. Zn2* 308 (cross), and water 567. 

siderable mechanistic significance,1'4 tending to support the an­
hydride mechanism of CPA.15 No covalent modification is ex­
pected to occur at Glu-270 by the alternative mechanism where 
the carboxylate of Glu-270 functions as a general base;1-4 instead, 
a diol may be produced. 
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